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Pressure discontinuities occurring on the boundary of an ideal incom- 
pressible fluid occur, for example, in problems of the propagation of 
shock waves along the surface of a fluid. These problems are frequently 
solved in linearized form (the boundary perturbations are small because 
of the smallness of the ratio of the density of the air to the density 
of water) El]. Honever, near the points where the discontinuity in pres- 
sure occurs (the front of the shock wave) the linearization is not valid, 
because the speed of the particles, as given by the linearized theory, 
increases indefinitely under these circumstances [l] . Selow we shall 
consider the motion of an ideal fluid in the neighborhood of a pressure 
discontinuity, on its boundary without linearization of the problem. It 
is shown that the free boundary has a curved spiral form (it is assumed 
throughout that the fluid is ideal, incompressible, and not under the in- 

f Iuence of gravity). 

1. Consider the plane steady potential flow of a fluid in a domain 
bounded solely by a free surface AFB. Let X, y be the Cartesian coordi- 
nates in the plane of the motion, E = x + iy; with I = a~ at the points A 

and B and z = 0 at the point F. Suppose that the velocity on the free 
surface is always directed from A to B and that its magnitude is vI on 
AF and ug on FB (at the point F there is a pressure discontinuity, and 
hence also a discontinuity in the speed), and the fluid occupies the 
domain on the right of the curve AFB (as seen by a moving observer travel- 
ing on AFB in the direction of the velocity vector on AFB). 

Suppose that the complex potential ~(2) = g, f iy is zero at F; then 

cp<O onAF, cp>O on FB, $I = 0 on AFB 
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and q~ < 0 in the destain of the motion. The function 

In vp - In W’ 
z lw) = In 2)s - In 01 (1.1) 

(which is introduced in following the method of Kirchhoff-Mitchell), the 
prime denoting the derivative with respect to Z, is analytic in the half 
plane y < 0 and satisfies the boundary conditions 

ReZ=l for $=O, cp<O; ReZ=O for $=O, cp>O 

It is obvious that this function is precisely 

Z(w) =- &lll$ (1.2) 

where a0 > 0 is an arbitrary constant, the branch of the logarithm being 

that for which - ‘II < Im In 10 < 0 for In w < 0. From (1.1) and (1.2). 

taking into account that r(0) = 0, one obtains the relation between w and 

2: 

(1 - ta i-ia ia) viz = w. w , a= fin $ (1.3) 

The complex potential is a power of t with a complex exponent, which 
degenerates to plane parallel flow when a = 0 (a change in w,, corresponds 

to a rotation in the coordinate axes). 
From (1.3) it follows that the parts 
AF and FB of the boundary are loga- 
rithmic spirals of equations, respec- 
tively, 

b 
wo 

= v*)/i +a9 
-exp ($tari_la) (z = re*‘) Fig. 1. 

The case VI > ug, a > 0 (and pressures p1 < p,) of the motion is 
illustrated in Fig. 1, where the nature of the streamlines is also shown. 
Bhen a < 0 the spirals turn in the opposite sense, since in the neighbor- 
hood of F the flow is always toward the boundary with the smaller pres- 
sure. A particle moving on the boundary passes through F in a finite time, 
since the length of a bounded arc of a logarithmic spiral is always 
finite. The angle required to turn one spiral into the other in the 
domain of the motion, equals ~(1 + a2) > v; when 1 aI = 1 the fluid 
occupies the whole z-plane, cut along the spirals, and for 1 a) > 1 the 

domain of the motion consists of more than one sheet, while for I al -f a~ 

the number of sheets increases indefinitely. Using Bernoulli’s theorem 
and the Equation (1.3) for a. we obtain the following condition in order 
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that the doaain be simply covered (for a < 1, and p1 < pz, with p being 

the density of the fluid) 

2(Pa--I-4 
PG 

=i-(~~~~i-e-‘“-O.998133 (1.5) 

The JumP in Pressure across a shock wave in an ideal gas with adiabatic 
exponent y is given by the formula 

pa - pl = & po [(D - uoY - COY (1.6) 

where D, pO, Y,, , co are. respectively, the wave propagation speed, the 
density, the particle speed, and the speed of sound in the gas before the 
shook. In the case of shock waves in air, propagating along the surface 
of water. when air and water are at rest in front of the wave (in a 
system of coordinates attached to the wave front one has D = 0. ue = ~1). 
the condition (1.5) is automatically satisfied. Bat in this case the 
effect under consideration Is insignificant, since an increase in the 
distance of a thousand units from the point F on the boundary is achieved 
in less thau 8.2 minutes, in view of (1.4). If the fluid moves in the 
direction of the wave with a certain speed (with respect to the coordi- 
nate system attached to the shock, ve > ~1). then the spiraling effect 
is stronger, and it increases considerably with increasing speed. 

2, Suppose that the plane steady flow of an ideal fluid is bounded on 
one side by a plane wall YN and on the other by a free boundary AFB, on 

which there ockmrs a pressure discontinuity: p1 on AF, p2 on FB, with 

Pl < p2 (see Fig. 2). Construct the curve A’F’B’ which is the mirror 
Image of AFB with respeot to MN; the points of the strip A’F’B’BFA cor- 
respond to the strip 1~1 < Q in the plane w (here Q = u1yl = u2y2 is the 
flux). The function Z(r) satisfying the boundary conditions (taking cp=O 
at the point F) 

ReZ=O for fp>O, qt=+fQ; R8Z=l for cp<O, +=-j-Q 

Is given by the Schwarz Integral for the strip t21: 
0 

2 (w) = -& 5 -IT (rp -4 e=w / ZQ 
sech 

2Q 
dq+iC= &In +’ +iC ,*WiPQ __i (2.*) 

--m 

where that branoh of the logarithm appears which satisfies .O < Im ln( ) 
< T for lq~l < Q, and the constant C = 0 if the axis of reals is directed 
along k%. From (1.1) and (2.1). setting u(0) = 0, one may express I by 
means of v and Z, to obtain 

(2.2) 
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In order to determine z0 (the position of the point F) it is necessary 
to evaluate the second integral occurring in Equation (2.2) between the 

limits Z = l/2 and Z = l/2 - im, which, upon setting Z = l/2 - it/r, be- 
comes 

21/&G 
a, 

ZfJ = 20 + iyo = ____ - 
n ( s 

sdt+ iis dt) (2.3) 

0 0 

The first integral in (2.3) may be computed by means of a series. and 

the second can be evaluated in closed form [3] 

Near the point F the formulas (2.1). (2.2), as was to be expected, re- 

duce to the relations of Section 1 or (I > 0. The speed decreases mono- 

tonically from u1 to u2, and takes the value \J (~1”~) for z = 0, while the 

slope of the boundary with respect to MN increases monotonically from 0 

to + m on AF and decreases monotonically from + a to 0 on FB (see Fig.2). 

By means of the second integral of (2.2), extended along the free 

boundary one may estimate the amount of twist (i.e. the distance d between 

boundary points at which the velocity of the fluid is parallel to the y 

axis). The ratio of this distance to the mean width of 

fluid for small a, is given by 

d 32 - z - ae-- xl2a 
h 313 ( h = Yl + Y2 

2 1 

and hence the distance decreases, as G - f 0, somewhat 

height yg - yi which is of the order 

aah. 

3. In a plane vortex free motion 

there is a velocity potential which 

satisfies Laplace’s equation and is 

related to the pressure p by Cauchy’s 

integral of the equations of motion: 

the channel of 

(2.5) 

faster than the 

Fig. 2. 

Consider an unsteady, self-similar motion and introduce the follow- 

ing change of variables 

Y +- -’ ,q= ctk ’ 
cp (2, y, t) = c2Pk-lQ, (5, q), P(T y, q = Pc2tzk-2 p (f&q) (3.2) 
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where c has the dimensions L/T-k. In this last equation, CD (<. q) is a 
harmonic function of its variables, satisfying on the free boundary the 
following two conditions (kinematic and dynamic) 

aaD i?! d,,-- 

8% 
d% + k W% - %dq) = 0 

( 
(3.3) 

(2k-I)@--- 

where P, is the nondimensional external pressure, which may be regarded 
as a discontinuous functiou on the boundary. Introducing the complex 
variables 5 and I (5 = c + iq, Re I = @), Equation (3.3) may be rewritten 
(with the asterisk denoting the complex conjugate number) 

Im (dW - kE*dQ li: 0, Re [ (2k - 1) W - kc ‘$1 + $- I$? [ +- P@ = o (3.11) 

In order to consider the motion in the neighborhood of the point of 
discontinuity co, where P, experiences a jump, let us put, in (3.4) 

5=50+=, w = w (Co) +e k@ -+ EW (3.5) 

where E is a real parameter, and let us pass to the limit’ as E + 0, 
taking into account the boundedness of the derivative drr/dt (the velocity 
remains bounded in magnitude). The condition (3.4) becomes 

Imw =const, 
1 dw 2 
- - +Po=constl 

I I 2 dt 

which coincide with the conditions for the complex potential on the free 
boundary in the steady problem. Consequently, near the point of the 
pressure discontinuity on the boundary, the surface has a spiral form 
(Fig. 1) which deforms by similitude according to a power law in the 
time. 

The author tenders his thanks to S.S. Grigorian for useful discussions. 
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